个人信用评估如何用spss主成分分析?
spss主成分分析法详细步骤:
1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。
2、打开因子分析界面之后,把需要进行分析的变量全部选进变量对话框,然后点击右上角的描述。
3、勾选原始分析结果、KMO检验对话框,然后点击继续。
4、点击抽取,方法里选择主成分再点击碎石图。
5、点击旋转,再点击最大方差旋转。
6、点击得分,再点击,保存为变量及显示因子得分系数矩阵。
7、最后点确定就可以在输出截面看到主成分分析的结果了。总结:以上就是spss主成分分析法详细步骤。
烛之武退军师原文?
烛之武退秦师
先秦 · 左丘明
晋侯、秦伯围郑,以其无礼于晋,且贰于楚也。晋军函陵,秦军氾南。
佚之狐言于郑伯曰:“国危矣,若使烛之武见秦君,师必退。”公从之。辞曰:“臣之壮也,犹不如人;今老矣,无能为也已。”公曰:“吾不能早用子,今急而求子,是寡人之过也。然郑亡,子亦有不利焉。”许之。
夜缒而出,见秦伯,曰:“秦、晋围郑,郑既知亡矣。若亡郑而有益于君,敢以烦执事。越国以鄙远,君知其难也。焉用亡郑以陪邻?邻之厚,君之薄也。若舍郑以为东道主,行李之往来,共其乏困,君亦无所害。且君尝为晋君赐矣,许君焦、瑕,朝济而夕设版焉,君之所知也。夫晋,何厌之有?既东封郑,又欲肆其西封,若不阙秦,将焉取之?阙秦以利晋,唯君图之。”秦伯说,与郑人盟。使杞子、逢孙、杨孙戍之,乃还。
子犯请击之,公曰:“不可。微夫人之力不及此。因人之力而敝之,不仁;失其所与,不知;以乱易整,不武。吾其还也。”亦去之。
主成分分析怎么用spss算特征值?
求各主成分的权重:
权重就是用提取出来的主成分的特征根值去除以这几个主成分特征根值之和就得出对应每个主成分的权重了。各个主成分的特征值可以查看解释的总方差表。
因子解释变异量:
因子解释的变异量=该因子特征值/因子总数。如因子特征值为1.56,共有20个因子,该因子解释的变异量为7.8%
因子解释的变异量可以直接在解释的总方差表中看到。
SPSS的主成分分析主要是解决什么问题?
spss的主成分分析主要应用在因子分析里,目的是将原来很多的因素,通过他们内在的相关分析,整合成新的一个或多个相对独立的综合因素,来代表原来散乱的因素。
例如我们测量客户满意度,设计了10个题目,那数据收集完后,就可以通过因子分析,来看看这10个题目是否能综合成几个因素。
通过spss的主成分分析,就可以得出相应结果。
结果可能是其中5个题目的相关显著,可以通过一个因素来归纳这5个因素,另外3个、2个也可以分别组成一个,而且主成分对应的特征值大于1,这样就最后就可以通过3个综合因素来研究和分析客户满意度了
spss如何求主成分分析的成分系数怎么求?
用SPSS做主成分分析时,因为软件只有因子分析,所以对求出来的因子系数矩阵要进行计算得到相应的主成分系数。
具体步骤是用每一列的因子除以相对应的特征值的开方(在spss下的transform—computevariable进行计算就可以)。
求出主成分系数后,乘以标准化后的原始数据(spss中的描述性统计分析就可以做到),得到的就是主成分矩阵。至于你问的综合主成分计算,是最后一步了,用主成分矩阵乘以相应方差贡献率就是综合主成分值了。
你可能是把主成分分析和因子分析混淆了,因为只有因子分析才涉及到因子得分系数矩阵,不过其实很多人都会混了,因为两种方法实在是太像了,主成分可能用SPSS计算相对麻烦,因子分析还好。不过具体问题具体分析。
如果你会SAS那就方便多了,编程自己需要的程序,但是需要一定基础。
主成分分析和因子分析(用spss实现)?
一、主成分分析
(1)问题提出
在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?
这时,主成分分析隆重登场。
(2)主成分分析的原理
主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。
注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。
我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:
可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:
根据坐标变化的原理,我们可以算出:
Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2
Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2
其中sqrt(x)为x的平方根。
通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。
此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。
至此我们解决了两个问题:降维和消除共线性。
对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。
二、因子分析
(一)原理和方法:
因子分析是主成分分析的扩展。
在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。
因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。
举个例子:
比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:
x1 = 0.02 * z1 + 0.99 * z2 + e1
x2 = 0.94 * z1 – 0.01 * z2 + e2
x3 = 0.13* z1 + 0.98 * z2 + e3
x4 = 0.84 * z1 + 0.42 * z2 + e4
x5 = 0.97 * z1 – 0.02 * z2 + e1
(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)
第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”
第二个公因子z2主要与味道、风味有关,代表“口味”
e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。
同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。
(二)使用条件:
(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。
(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。
(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。
三、主成分分析和因子分析的联系与区别
联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。
区别:
(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。
(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。
spss主成分怎么进行分析?spss主成分分析法详细步骤?
分析—降维—因子分析。把要分析的问卷题项挪入,选项里边选择主成分分析法即可
spss主成分分析的优缺点?
主成分分析法的缺点:
1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。
2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。
因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。

散文精选网